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Abstract. Bitcoin, as the blockchain with the highest value, strongest
security, and highest decentralization, still faces challenges in scalability
and the limitation of smart contracts, greatly limiting its ecosystem’s de-
velopment. Existing solutions have not yet totally addressed these issues.
Bitlayer proposes a Turing-complete computing layer solution based on
the BitVM paradigm and zero-knowledge(ZK) proofs, while fully inher-
iting Bitcoin’s security. In Bitlayer, we introduce the Layered Virtual
Machine(LVM), which decouples the front-end smart contract execu-
tion layer from the back-end ZK Generator. Additionally, Bitlayer com-
bines Bitcoin’s Taproot technology with FRI (Fast Reed-Solomon IOP
of Proximity), aiming to achieve the most efficient ZK-STARK Verifier
currently available on Bitcoin. Furthermore, Bitlayer will implement a
trustless dual-channel cross-chain bridge based on BitVM and OP-DLC
(Optimistic-Discreet Log Contract) technology.

Keywords: BitVM, Bitcoin Friendly FRI, OP-DLC, Layered Virtual
Machine

1 Introduction

Bitcoin, as the first successfully implemented cryptocurrency, has attracted global
attention and continued exploration since its inception. However, despite Bit-
coin’s advantages in decentralization and high security, issues related to trans-
action speed and costs on its main chain have been a focal point of industry con-
cern. Additionally, the limitations of Bitcoin’s smart contracts have restricted
the development of applications within the Bitcoin ecosystem. In order to ad-
dress these issues, Bitcoin Layer 2 solutions have emerged, becoming a core topic
in blockchain and crypto technology.

Currently, in order to improve the transaction throughput and efficiency of
the Bitcoin network, scalability technologies such as sidechains and state chan-
nels have emerged. Among them, state channels provide secure and diverse pay-
ment solutions with advantages in real-time processing, privacy protection, and
cost-effectiveness. However, their implementation primarily involves two parties,
and each interaction requires complex processes to open and close channels. Ad-
ditionally, state channels have limited capabilities in verifying arbitrarily com-
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plex computations. This limitation reduces their applicability in scenarios re-
quiring complex conditional logic and interactions.

On the other hand, while sidechain solutions offer stronger independence,
scalability, and flexibility in design, and even provide better smart contract sup-
port than Bitcoin, they do not inherit Bitcoin’s robust security. This security
difference stems from sidechains employing independent consensus mechanisms,
which are far less robust compared to Bitcoin’s consensus mechanism.

So we propose Bitlayer, a Turing-complete Layer 2 solution on Bitcoin, with
Bitcoin Layer 1 security inherited. In Bitlayer, we built a layered virtual machine
technology derived from BitVM solutions. This technology supports arbitrary
types of computational operations through zero-knowledge proofs and optimistic
execution mechanisms, and verifies the validity of computations on Bitcoin. Lay-
ered Virtual Machine technology allows us to support any frontend type of smart
contract such as those implemented in the EVM, as well as backend proof genera-
tors such as ZK-STARKs/ZK-SNARKs, while ensuring security and maximizing
computational flexibility. Additionally, Bitlayer combines BitVM with OP-DLC
(Discreet Log Contracts with Optimistic mechanism) technology to build a se-
cure and decentralized assets bridge mechanism. This solution bridges the assets
between Bitlayer and Bitcoin, introducing a forced withdrawal mechanism to
ensure asset security under any circumstance, even if Bitlayer was completely
removed.

2 Architecture

Fig. 1. The Architecture of Bitlayer
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Bitlayer has revolutionized the verification process for Layer 2 transactions
using optimistic execution, while keeping the Bitcoin protocol intact. Its archi-
tecture comprises transaction processing, verification, and asset bridging compo-
nents. Transaction processing involves a sequencer and Layered Virtual Machine
(LVM), optimizing transaction handling and computational efficiency. Transac-
tion verification, managed by provers and challengers, ensures transaction valid-
ity and compliance with network rules. They collaborate to complete the entire
process from Layer 2 transaction handling to Layer 1 confirmation, maintain-
ing transaction security and integrity throughout the process. Bitlayer’s assets
bridge components further enhance its capabilities by enabling interoperability
between Layer 2 and Layer 1 networks, facilitating secure asset transfer across
blockchain layers. Bitlayer’s technical architecture is mapped out below.

2.1 Transaction Processing

Transaction Processing, as illustrated in the figure above, involves the sequencer
and Layered Virtual Machine. These components are responsible for the entire
transaction handling, starting from transaction acceptance to executing the out-
put.

Sequencer: Like other Layer 2 solutions, the sequencer in Bitlayer is responsible
for collecting cached transactions and sorting them, serving as the entry point
for transactions in Bitlayer.

Layered Virtual Machine (LVM): The LVM is the computing component
of Bitlayer, responsible for executing smart contracts and generating the latest
states and zero-knowledge proof. Challengers then use this proof to challenge
the execution results.

2.2 Transaction Verification

In Bitlayer, transaction verification is achieved by a zero-knowledge-based opti-
mistic mechanism between the prover and challenger.

Prover: The Prover is responsible for submitting Layer 2 transactions and
states of execution to the Layer 1 chain as described above. It also reveals zero-
knowledge proofs on the chain when getting challenged.

Challenger: The Challenger is responsible for verifying the execution results
submitted by the Prover through states of execution and zero-knowledge proof
verification. If malicious behavior is detected, the Challenger initiates a challenge
process to generate fraud proofs including invalid zero-knowledge proofs and
submits them to the Layer 1 chain.

2.3 Asset Bridge

The bridge acts as a crucial component in Bitlayer’s infrastructure, facilitating
the seamless movement of assets between Layer 2 and Layer 1. Its primary
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responsibility is to ensure the secure transfer of user assets through an innovative
combination of OP-DLC and BitVM.

3 Bitlayer Execution Protocol

In Bitlayer, we propose an execution mechanism derived from BitVM with zero-
knowledge proofs and an optimistic mechanism, which achieves off-chain ex-
ecution of transactions and on-chain verification of Bitcoin without requiring
modifications to the underlying Bitcoin protocol. This solution implements a
Turing-complete Bitcoin Layer 2 smart contract solution, enabling verification
of any complex off-chain computation on the Bitcoin blockchain. Additionally, we
also propose a compound virtual machine model called Layered Virtual Machine
(LVM), which decouples the supported types of smart contracts from backend
zero-knowledge proof verifications, enabling independent optimization and ex-
tension. Bitlayer significantly broadens Bitcoin’s potential applications, allowing
it to serve not only as a means of payment but also as a validation platform for
various decentralized applications and complex computing tasks.

3.1 Optimistic Execution With Zero-Knowledge Proofs

Bitlayer employs the same optimistic execution mechanism as optimistic rollups,
which assumes all received transaction batches are valid unless a participant
can prove the invalidity of any transaction in that batch. On the one hand,
assuming transactions are valid allows for the fastest on-chain processing. On
the other hand, the transaction will be reverted as long as one participant can
honestly prove its invalidity, which adopts a 1-of-n security model. Additionally,
Bitlayer applies zero-knowledge to reduce the cost of the challenge. Through this
approach, the optimistic execution mechanism increases transaction throughput,
lowers costs, and maintains the security and decentralization properties of the
underlying blockchain.

3.1.1 Processing Framework

In Bitlayer, the optimistic execution mechanism consists of processes such as
transaction batching, transaction execution with zero-knowledge proof genera-
tion, transaction and state submission with zero-knowledge proofs, challenges,
and state rollbacks. In the optimistic execution mechanism, transactions are
initially batch-processed off-chain and then submitted with states and zero-
knowledge proofs to the Layer 1 blockchain in a compressed format, reducing
data load and associated costs. Once processed, other participants have a chal-
lenging period to submit fraud proofs if incorrect transactions or invalid state
transitions are detected by zero-knowledge proof verification. Successfully ac-
cepted fraud proofs will trigger state rollbacks and penalties for malicious actors,
which ensures the security and integrity of the whole system.
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3.1.2 Data Availability

The challenge process in the optimistic execution mechanism relies on the trans-
action submitter’s disclosure of transactions and the current state. Therefore,
Bitlayer requires a secure, highly reliable, and decentralized data availability
mechanism. Currently, Bitlayer utilizes Bitcoin to provide data availability as
Bitcoin is the most robust, secure, and decentralized blockchain in terms of con-
sensus.

To meet Bitcoin’s on-chain requirements, submitted data is compressed and
split into multiple transactions submitted to Bitcoin that are organized like
Bitcoin inscriptions. Subsequently, validators filter transactions, identify all in-
scriptions, and reconstruct the original data.

In the future, to reduce operational costs, Bitlayer is also researching inte-
grating other data availability modules such as Celestia, Data Availability (DA)
Committee, etc., while ensuring the same level of security, reliability, and decen-
tralization.

Fig. 2. Data Availability in Bitlayer

3.1.3 Rollup Proof Generation

The illustration below delineates the rollup-proof generation of the Bitlayer pro-
tocol, comprising five distinct circuits:

– Execution Circuit: This circuit processes state checkpoints and user trans-
actions, encodes the Bitlayer state transition logic, and yields proof for ver-
ifying the accuracy of state transitions.
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– Aggregation Circuit: Accepts multiple state transition proofs as input,
encapsulating the logic for zk-proof verification, and produces a consolidated
batch proof.

– Bitlayer Block Derivation Circuit: This circuit is fed with the Bitcoin
canonical chain, represented by the finalized block hash, encoding the logic
for Bitlayer block derivation, yielding the derivation proof.

– Bitcoin Block Finalization Circuit: Accepting the Bitcoin finalized block
hash as input, this circuit encodes the Bitcoin PoW logic and finalization
logic, generating the finalization proof. The Bitcoin finalized block hash is
referred to as the trust anchor.

– Rollup Circuit: Taking proofs from the aforementioned circuits as input,
this circuit encodes the linkage logic for the public inputs of these circuits,
culminating in the generation of the final proof, which can be challenged
using BitVM.

Fig. 3. Bitlayer Rollup Circuit

This design also fosters flexibility within the DA layer. Through adjustments
to the block derivation circuit and the DA layer finalization circuit, Bitlayer can
easily extend support to other DA layers. Additionally, we can incorporate a
censorship resistance mechanism into block derivation logic to deter the Bitlayer
sequencer from omitting user transactions in Layer 2 blocks.
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3.2 Challenge Protocol

In early version of BitVM (BitVM1), the challenger constantly uses the binary
method to challenge the state of a specific instruction set to find the instruction
where the Prover made a mistake. Ultimately, the Prover needs to use its declared
state to execute the corresponding instruction. At this point, the Prover cannot
be successful, so it cannot retrieve its staked Bitcoin, while the Challenger can
unlock the staked amount after the Timelock ends.

In the latest version of BitVM (BitVM2), unlike BitVM1, the Prover commits
the entire program in segments to the leaf nodes all at once. Anyone can spend
from any of these scripts exactly if an assertion fi(z(i−1)) = zi doesn’t hold.

The Bitlayer challenge game continues to use the BitVM2 challenge scheme,
but we challenge the correctness of a STARK verifier’s execution. We propose
a Bitcoin-Friendly FRI to ensure that the FRI Verifier doesn’t need to simulate
the process of verifying the MerklePath in Tapscript. Instead, it directly utilizes
the characteristics of the Taptree, committing all polynomial evaluations to the
corresponding Taptree leaf nodes.

3.2.1 Commitments
Commitments are the foundations of data processing in the challenge protocol.
Similar to BitVM, a series of commitments are defined to describe the computing
process, including bit commitment, gate commitment, and circuit commitment,
which all can be implemented into Bitcoin scripts.

Fig. 4. Process of Bit Commitment Script

Bit Commitment: The concept of bit commitment is a variation derived from
Lamport signatures. It involves two hashes, hash0 and hash1 (with the cor-
responding preimages being preimage0 and preimage1). The prover then can
determine the value of the bit: either "0" by disclosing preimage0, which cor-
responds to hash0, or "1" by disclosing preimage1, corresponding to hash1. Bit
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commitments enable the prover to set a variable’s value across various scripts and
UTXOs, extending the execution runtime of Bitcoin’s VM through transaction
splitting across multiple transactions.

Custom Gate Commitment: Gate commitment refers to the commitment of
a custom gate, which can be assembled to represent any computable function.
It can be composed of any input and output which is represented by bit com-
mitment and any Bitcoin script. The following figure demonstrates the NADN
gate commitment.

Fig. 5. NAND Gate Commitment

Fig. 6. Circuit Commitment

Circuit Commitment: Bit Commitment also has another name Copy Con-
straint. Once we have any gate constraints and copy constraints, we can express
any computation with them (already proved by zkVM). For example, a sizeable
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program such as f(x) = y can be broken down into:

f1(x) = y1, f2(y1) = y2, f3(y2) = y3, f4(y3) = y4.

In this way, we need to design 4 custom gates: [f1, f2, f3, f4]. Therefore, we
can distribute complex computations across multiple leaf nodes, thus enabling
Bitcoin to implement ZK Verifier capabilities.

3.2.2 Challenge Game
Ultimately, we aspire towards the implementation of validity proofs in Bitcoin,
but since the number of intermediate states of our optimized STARK Verifier
is still relatively large, we continue to adopt an optimistic execution approach.
The specific plan is as follows:

Prover Claim Correct State

Fig. 7. Prover Claim Correct State

Bet Phase: Initially, the Prover sends 3BTC to the reveal-state-addr through
Transaction 1 (Tx1).
Claim State Phase: The Prover reveals the starting and ending states of their
claimed program by unveiling the corresponding Bit Commitment. It is im-
portant to note that Transaction 2 (Tx2) has divided a 3BTC input Unspent
Transaction Output (UTXO) into three output UTXOs.
Awaiting Finalization Phase: At this stage, the Prover waits for the time-
lock’s required time to expire before unlocking the transaction via the timelock.
It’s worth noting that unlocking this timelock transaction also requires signa-
tures from n Operators. Operators are a committee to ensure that the Prover
constructs a Taptree honestly and accepts challenges.

In this case, Tx2 explicitly needs to divide one UTXO into three specific
amount UTXOs. The Operator can calculate Tx2’s hash before Tx2 happens,
allowing them to know the specific content of Tx3’s input UTXO. Simultaneously,
Tx3’s output to the Prover’s Pay-to-Public-Key-Hash (P2PKH) address ensures
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determinism. Hence, the Operator can pre-sign this transaction. Note that the
SIGHASH here will use ALL, meaning it will apply to all inputs and outputs.

Furthermore, due to this pre-signature mechanism, if any of Tx2’s output
UTXOs are consumed, Tx3 cannot execute. Therefore, we can initiate challenges
by consuming UTXOs.

Challenge Occurs

Fig. 8. Prover Claims Correct State and Challenge Occurs

Fig. 9. Prover Claims Incorrect State and Challenge Occurs

In this scenario, the Bet Phase and Claim State Phase remain unchanged,
but a challenge arises during the Awaiting Finalization Phase.
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Verifier Bet Phase: If anyone disputes the state claimed by the Prover, they
can initiate a challenge with Transaction 4. This transaction consumes the
UTXO required by Transaction 3, preventing its execution. Simultaneously,
Transaction 4’s SIGNHASH=SINGLE|ANYONECANPAY allows anyone to launch
this challenge by deploying 2BTC.
Prover Reveals Intermediate States: In Transaction 5, the Prover consumes
the 3BTC UTXO and discloses all intermediate states.
Verifier Wins the Challenge Phase: If the Verifier detects any issues with
the intermediate states revealed by the Prover in Transaction 5, they can find
the corresponding unlock script in the current Taptree. In Transaction 7, the
Verifier wins the challenge and earns a 1BTC reward (3-2).
Prover Wins the Challenge Phase: If all states provided by the Prover are
accurate, the Verifier will not find the corresponding faulty gate logic. In Trans-
action 6, the Prover can claim their pledged BTC after the Timelock expires,
winning the 2BTC initially bet by the Verifier to start the challenge.

3.2.3 Zero-Knowledge Proof Verification on Bitcoin
There are two primary categories of Zero-Knowledge Proof (ZK-Proof) systems:

– Elliptic curve pairing-based ZK-Proof systems, such as the BN254-based
Groth16 proof system.

– Hash function-based ZK-Proof systems, such as STARK and its variations.

The security of elliptic curve pairing-based ZK-Proof systems relies on the
elliptic curve, typically with a prime field of around 256 bits. Due to Ethereum’s
implementation of the BN254 precompiled contract, the verification cost for ZK
proofs based on BN254 curve pairing is economical. However, Bitcoin does not
support the OP_MUL opcode, and implementing pairing operations would re-
quire a large script that exceeds the single standard block capacity limit. To
realize a BN254 curve pairing-based ZK Verifier on Bitcoin, the following opti-
mization strategies could be considered:

– Utilize schemes like Groth16, or FFlonk (where the FFlonk Verifier algorithm
is simpler than Groth16’s Verifier algorithm, albeit at the cost of increased
computational load on the Prover).

– Customize a smaller parameter curve for Bitcoin, though this would reduce
security, as attempted by the Liquid team, resulting in approximately only
50 bits of security.

One significant advantage of hash function-based ZK-Proof systems is their
post-quantum security, in contrast to elliptic curve pairing-based ZK-Proof sys-
tems. Therefore, in the long term, STARK might be a more appropriate choice.
Current STARK systems use smaller finite fields, such as M31 and BabyBear,
which are Bitcoin-friendly. These fields allow direct use of OP_ADD and OP_SUB
for addition and subtraction operations. While there is no OP_MUL for multipli-
cation, it can be implemented using existing opcodes through the double-and-add
algorithm.
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However, Bitcoin currently does not support the OP_CAT opcode. To im-
plement a hash function-based ZK Verifier on Bitcoin, the following strategies
could be considered:

– Implement a Bitcoin-friendly hash function using existing opcodes. The
script size for the currently implemented Blake3 hash function is still too
large. Exploring the structural properties of small finite fields, such as the
bit shift for multiplication by a power of 2 feature in M31, could enable the
implementation of hash functions like Poseidon.

There are several ways to optimize the ZK-Proof Verifier on Bitcoin:

– Optimize the existing Winternitz signature to reduce the state transfer over-
head between scripts.

– Split the Bitcoin script into multiple transactions to execute the ZK Verifier
algorithm.

– Use an OP mechanism that adjudicates on-chain only in case of disputes.
The OP solution ensures that as long as there is one honest participant, the
correct result can be guaranteed with acceptable costs.

– Adopt a ZK Fraud proof scheme that generates a ZK-Proof only in the case
of disputes. This On-Demand mode can reduce off-chain Prover costs.

– Different ZK-Proof systems can be combined, balancing the off-chain Prover
costs and on-chain Verifier costs.

Implementing a ZK-Proof Verifier on Bitcoin has profound implications for
the Bitcoin ecosystem. It not only helps to achieve Bitcoin transaction intro-
spection but also enables the creation of a ZK aggregation layer. This layer can
aggregate proofs from multiple Bitcoin ecosystem projects into a single on-chain
verification, significantly alleviating the congestion issue of the Bitcoin network.

3.2.4 Bitcoin Friendly FRI

The creative work we have done concerning Zero-Knowledge Proof Verification
on Bitcoin is to provide an FRI protocol that can be verified on Bitcoin at very
low cost, called Bitcoin Friendly FRI.

In the above Challenge Game, the Prover reveals all states’ preimages on the
chain. The Verifier, on the other hand, obtains the Prover’s staked amount by
proving that the states revealed by the Prover would cause the corresponding
gates to execute incorrectly.

However, the issue here is that the Prover needs to reveal all states on the
chain, which can be costly if the computation complexity is high. Even if we
pack each leaf script with 400KB, there are still many intermediate states. To
verify STARKs, we need to verify an excessive number of Merkel paths, which
would make our verification program large and thus cause too many intermediate
states.

During the upgrade process of Bitcoin’s Taproot, the concept of Taptree
was introduced. We can replace MerkleTree with Taptree by committing all
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Fig. 10. Bitcoin-friendly FRI

evaluations corresponding to the committed polynomial in the Leaf Script of
Taptree. In this way, we can avoid simulating the verification process of Merkel
paths on the chain using Bitcoin script. At the same time, Prover can reduce
the cost of revealing intermediate states on the chain. Our ultimate goal is to
continue to reduce the cost of folding polynomials on top of this so that validity
proofs can be submitted to Bitcoin.

In the following diagram, for the FRI Verifier, the number of intermediate
states the prover needed to reveal is 3N . Due to the Bitcoin Friendly FRI Verifier
avoiding verifying the MerkleTree Path on chain, it only needs to reveal N
intermediate states. Find more information on Bitcoin-Friendly FRI here.

3.2.5 Scaling Security: Multi-Proof Challenge Game

Implementing zkproof verifiers based on Bitcoin Scripts is an extremely challeng-
ing task. Achieving bug-free status is nearly impossible. Inspired by the princi-
ple of diverse clients in the blockchain realm, Bitlayer plans to utilize Bitcoin
and BitVM technologies to establish a variety of zkproof verification challenge
systems, including ZK-SNARKs (such as Groth16) and the Bitcoin-friendly ZK-
STARKs mentioned earlier.

The diagram above illustrates the operational principle of Bitlayer’s multi-
proofs challenge game system. The Bitlayer Prover will simultaneously create
multiple fund transactions on Bitcoin, targeting different types of ZK Proof
verifier challenge programs. Any verifier who successfully challenges one of these
proof verifiers will be rewarded. This effectively reduces the risk associated with
a single proof verifier challenge system and scales Bitlayer’s security.

https://github.com/BitVM/bitvm.github.io/pull/1
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Fig. 11. Multi-proofs challenge game

3.3 Layered Virtual Machine

Fig. 12. Layered Virtual Machine

Layered Virtual Machine (LVM) technology represents a significant advance-
ment in terms of smart contract execution. This innovative approach enables the
support of various frontend smart contract types, such as EVM/CairoVM, and
backend zero-knowledge proof verifiers, including ZK-STARKs and ZK-SNARKs
(Groth16, PLONK, etc.) while maintaining robust security measures and en-
hancing computational flexibility.
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Supporting multiple frontend smart contract types can easily attract devel-
opers from various blockchain ecosystems. For instance, EVM is a widely used
smart contract platform with its own bytecode and execution environment. By
integrating support for EVM within the LVM framework, developers can lever-
age existing EVM-based smart contracts seamlessly while also benefiting from
enhanced execution capabilities provided by layered architecture.

On the backend side, supporting various zero-knowledge proof generators
provides more optimization possibilities for the disputing process without com-
promising existing functionalities. In the future, when more succinct and efficient
zero-knowledge proof systems emerge, Bitlayer’s flexibility will allow for quick
adaptation essential for keeping pace with evolving blockchain standards, emerg-
ing technologies, and changing user requirements.

4 Asset Bridge

Bitlayer introduces a dual-channel two-way peg asset bridge, comprising the
OP-DLC (DLC with optimistic mechanism) bridge and BitVM bridge, which
operate concurrently. This architecture provides tailored security options to meet
diverse user preferences. The OP-DLC bridge is a channel that enables users to
lock BTC in a trustless and self-controlled manner. By incorporating our novel
challenge protocol, OP-DLC effectively addresses the collusion issue associated
with oracles in the original DLC protocol. The BitVM channel, on the other
hand, facilitates a minimally trusted custodian scheme, requiring only a 1 of N
security level. For those seeking robust security and self-controlled assets, the
OP-DLC channel is available, while the BitVM channel caters to users requiring
greater flexibility and speed. Furthermore, the dual-channel design enhances
scalability, ensuring efficient performance even under high demand.

4.1 Threat Model

We operate under the premise that the Bitcoin blockchain maintains robust
security, effectively immunizing it against vulnerabilities like double-spending
attacks. Nonetheless, there exists a potential risk within the BitVM Federation
nodes, tasked with managing the dual-channel bridge, where they might be sus-
ceptible to compromise. Our security model acknowledges the possibility that an
adversary could gain control over up to n−1 nodes, implying that the integrity of
the system can be upheld as long as a single host node remains uncompromised
and operational.

For the uncompromised node, the adversary cannot read or tamper with the
data and code running on the node. The uncompromised node serves as a verifier
in the BitVM model, initiating a challenge game if the BitVM bridge operator or
the OP-DLC oracle nodes act maliciously. In the challenge game, the malicious
node must provide fraud proof to win; otherwise, the honest verifier prevails and
claims the prover’s deposit.
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Fig. 13. Bitlayer bridge

4.2 System Architecture

The Bitlayer asset bridge provides user-controlled decentralized custody, as well
as a high-liquidity Bitcoin Layer 2 cross-chain solution based on BitVM+DLC
technology. Bitlayer offers a dual-channel two-way peg bridge that not only meets
the self-controlled asset needs of Layer 1 users for BTC deposit and withdrawal,
but also satisfies the smooth withdrawal requirements of native Layer 2 users.
The core components of the asset bridge consist of BitVM Federation nodes,
DLC components, Layer 2 smart contracts, and Relayers:

1. BitVM Federation: The nodes within the BitVM Federation act as a ver-
ification network to ensure the secure execution of Layer 2 transactions and
the stable operation of the Bitlayer bridge. When Layer 2 begins, validated
organizations can join the federation by depositing a specific amount of BTC.
As the Layer 2 network progresses, the federation dynamically adjusts and
increases its membership to boost security and decentralization. Within the
cross-chain bridge, the BitVM Federation collectively manages decentralized
asset custody for the BitVM bridge channel, attaining a 1 of N security
level, meaning only one honest node is needed for network integrity. More-
over, the BitVM Federation functions as an oracle network for the OP-DLC
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bridge channel, requiring only some members to agree (t of N) to produce
a legitimate oracle signature.

2. DLC Components: Using DLC for deposits and withdrawals ensures users’
autonomous control over their assets but introduces restrictions on the BTC
amount for deposits and withdrawals. Because DLC requires predefined
CETs to determine the withdrawal amount, supporting fine-grained CETs is
necessary to meet user-friendly withdrawal requirements. The first function
of the DLC component is to facilitate the creation of funding transactions,
where the assets are initially output to a 2 of 2 multi-sig output, with the
parties involved being the user and the BitVM Federation (N of N) address.
The second function is the CET manager, which pre-creates DLCs support-
ing multiple future withdrawal requirements, thus realizing a user-friendly
cross-chain solution.

3. Layer 2 Smart Contracts: The bridge and light client are two core smart
contracts on Layer 2 that implement the trustless bridge. The bridge smart
contract manages the issuance and destruction of BTC assets on Layer 2. The
light client contract maintains Bitcoin block header information on Layer 2,
and Bitlayer uses ZKP-based Bitcoin state proofs to update and maintain
the block header information. The light client contract also provides a Verify
function to validate Bitcoin transactions, by submitting a Simplified Pay-
ment Verification (SPV) proof of the transaction to the light client contract
to verify the legitimacy of the Bitcoin transaction. The bridge contract calls
the light client’s Verify function to validate the legitimacy of users’ locking
transactions on Bitcoin, ensuring that all BTC assets on Layer 2 are issued
in a trustless manner.

4. Relayers: The Relayer plays a critical, trustless role in the Bitlayer as-
set bridge, primarily tasked with monitoring both Layer 1 and Layer 2
blockchains and updating the state of light client data on the Layer 2 blockchain.
When the Bitcoin network commits a new block, the relayer submits a state
update transaction for the light client, accompanied by a zero-knowledge
proof. Whenever there is a bridge transaction, the relayer forwards it to a
smart contract (peg-in) or a BitVM Federation node (peg-out) for further
processing. The inclusion of this permissionless relayer system ensures the
continuous operation of the asset bridge; the bridge remains functional as
long as at least one relayer is operational.

4.3 Bridge Protocol

We present our bridge protocol, which encompasses a specific lifecycle comprising
Peg-In and Peg-Out processes, as illustrated in the figure above.

4.3.1 Peg-In

The user Alice initiates a deposit request and locks a certain amount of BTC
on the Bitcoin network. Alice has two deposit options: Option 1: Deposit via
OP-DLC Channel - Alice locks BTC into a DLC contract and negotiates with
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Fig. 14. Bitlayer bridge Peg-In

the BitVM Federation to create CETs for various withdrawal needs (the smallest
unit is 0.1 BTC). Option 2: Deposit via BitVM bridge Channel - Alice directly
locks BTC into an N of N multi-sig address of the BitVM Federation, without
needing to consider future withdrawal requirements. Future withdrawals can
also be made directly through the BitVM bridge (any amount, faster speed).
For both deposit channels, user Alice will provide a receipt address (such as an
EVM address) in the Bitcoin script to serve as the recipient on Layer 2. This
process is depicted in Step 1.

The Relayer node continually watches the Bitcoin network, and is responsible
for submitting the latest block information from Bitcoin to the Layer 2 light
client smart contract. This process is depicted in Step 2 and 3.

Once the user’s deposit locking transaction has reached the required number
of confirmation blocks (usually 7 blocks), any party can submit a mint transac-
tion to the Layer 2 bridge contract, accompanied by an SPV proof to validate
the transaction. The bridge contract will assess the mint transaction’s legitimacy.
Upon confirming that the locking transaction is valid, it will execute the mint
operation, thereby minting the equivalent BTC to Alice’s designated receipt
address on Layer 2. To safeguard against double-spending attacks, the bridge
contract maintains a record of the state of each Peg-In transaction. This process
is depicted in Step 4.
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Fig. 15. Bitlayer bridge Peg-Out

4.3.2 Peg-Out

User Alice submits a withdrawal request and burns a specified amount of BTC on
the Bitlayer network. She then has two withdrawal options: Option 1 allows her
to withdraw directly via the BitVM bridge Channel, while Option 2 employs a
joint withdrawal mechanism using OP-DLC+BitVM bridge Channel, with OP-
DLC handling the main withdrawal and BitVM used for smaller amounts or
change. Specifically, if Alice initially deposited BTC through the OP-DLC chan-
nel, she has the flexibility to choose either withdrawal option. However, if her
initial deposit was via the BitVM bridge Channel, or if she is an original Layer
2 user without a Peg-In transaction, her withdrawal is limited to the BitVM
bridge Channel. This step is illustrated in Step 5.

The Relayer node will consistently observe the Bitlayer network for any with-
drawal activities. Once it identifies a withdrawal event, it will assess the chosen
method of withdrawal before advancing to the next steps. Subsequently, it relays
the withdrawal request to the appropriate BitVM Federation nodes for further
action. This step is illustrated in Step 6.
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If Alice chooses a direct withdrawal through the BitVM bridge Channel, a
BitVM bridge operator will first cover the withdrawal amount for Alice, allowing
her to receive the equivalent BTC on the Layer 1 network. After providing the
funds, the BitVM bridge operator can periodically reclaim the advanced BTC
from the BitVM Federation’s multi-sig (n of n) address. For security reasons,
this claim request must successfully pass the BitVM challenge process. If the
BitVM bridge operator acts maliciously, they will fail the challenge process and
lose their deposit. Alternatively, if the user opts for a collaborative withdrawal
through the OP-DLC+BitVM bridge Channel, they must have a DLC contract
pre-locked on Bitcoin. The withdrawal amount should be equal to or greater than
a predetermined CET output. The withdrawal will consist of both the OP-DLC
portion and the BitVM change portion, with the latter being handled just like
a standard BitVM withdrawal. This is illustrated in Step 7 and 8.

Details of the OP-DLC Peg-Out Channel: After receiving an OP-DLC
withdrawal request, BitVM Federation nodes will select a matching CET out-
put from the CET’s manager, and a quorum of t BitVM Federation nodes will
collaboratively sign to generate the effective DLC signature for that CET. Upon
receiving the broadcasted signature data, Alice can immediately receive the cor-
responding BTC from one of the CET outputs. The BTC directed to the BitVM
Federation address is first entered into a timelock script, allowing Alice to chal-
lenge the BitVM Federation members’ oracle signature data. The BitVM Feder-
ation address will receive the corresponding BTC only after the challenge period
ends. The two challenge games are as follows:

– Challenge 1: If the BitVM Federation members involved in the oracle sign
incorrect data, causing Alice to receive less BTC than she’s entitled to, Alice
has the right to initiate a BitVM challenge. Through this challenge, she can
claim the BTC that was locked by the oracle members involved.

– Challenge 2: If the BitVM Federation members participating as oracles con-
spire with Alice, resulting in her receiving more BTC than she’s entitled to,
this action undermines the interests of the entire BitVM Federation. In such
cases, the honest members of the BitVM Federation have the authority to
start a challenge against the colluding members, aiming to claim the BTC
they had locked.

4.3.3 Forced Withdrawal

In Bitlayer, the BitVM Federation is also the oracle and the counterparty in
the OP-DLC bridge. Both the locking transaction in the BitVM bridge and the
funding transaction in the OP-DLC bridge will be split into two transactions for
anti-censorship.

To make a peg-in, user Alice locks 1 BTC into a UTXO_1 that is only
spendable by either N + 1 of N + 1 multi-sig, or, Alice after n day, where
there are N − 1 verifiers, 1 bridge operator and 1 user. Then Alice and the
BitVM Federation co-sign to spend UTXO_1 and get UTXO_2, including a
Layer 2_address to receive wrapped BTC in Layer 2.
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Fig. 16. UTXO_1 and UTXO_2 during Peg-In

If the BitVM Federation censors Alice’s Peg-In, without co-signing to spend
UTXO_1, then after 1 day, Alice can take back her funds by herself. If the BitVM
Federation collaborates to spend UTXO_1 and get UTXO_2, then Alice can
use the Bitcoin SPV proof to mint the same locking amount in Layer 1 to the
specific Layer 2_address as shown in UTXO_2.

When something is wrong in Layer 2, Alice can use the DA and open-source
software to reconstruct the Layer 2 state. When Alice wants to Peg-Out through
OP-DLC, she needs t signatures out of n oracles to sign the right CET, or
collaborates with the counterparty to close the OP-DLC channel. When Alice
wants to Peg-Out through the BitVM bridge, she needs 1 honest verifier to help
her.

4.4 Security Analysis

In this section, we demonstrate how the Bitlayer bridge maintains the properties
of safety and liveness within the context of the threat model presented in Section
4.1.

4.4.1 Security Analysis

For the Peg-In bridge, both OP-DLC and BitVM bridge channels secure safety
by relying on the integrity of the Light client, which employs zero-knowledge
proofs. The system ensures that minting of the equivalent BTC on the Bitlayer
network occurs only if there is a valid locking transaction on the Bitcoin network,
verified by the Light client contract.

For the Peg-Out bridge, we conduct separate analyses for the OP-DLC and
BitVM bridge channels as follows:

OP-DLC Channel
In Bitlayer’s OP-DLC bridge channel, both the oracle and Bob roles are

consolidated under a single entity called the BitVM Federation. This federation
manages a multi-signature liquidity pool and concurrently acts as the oracle.
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Fig. 17. OP-DLC Challenge games

Under the threat model in Section 4.1, there is at least one honest node in the
BitVM Federation. We demonstrate that the OP-DLC channel Peg-Out achieves
safety by introducing two separate Challenge games:

– Game 1: If the oracle misbehaves and allocates more to Bob, Alice has a
stronger incentive to challenge Game 1 to recover her losses from Bob. This
mechanism ensures that oracle operates correctly, thereby maintaining safety
through an incentive activity.

– Game 2: If the oracle misbehaves and allocates more to Alice, an honest
member of Bob’s multi-signature Federation is highly motivated to chal-
lenge Game 2, to win and penalize the oracle. This setup ensures that both
the oracle and Alice act appropriately, ensuring safety through an incentive
activity.

All the Challenge games are facilitated through our novel Challenge Protocol,
as detailed in Section 3.2, ensuring an efficient and secure process.

BitVM Bridge Channel
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Fig. 18. BitVM bridge channel

In the context of the BitVM bridge, the threat model assumes there is at
least one honest node within the BitVM Federation. To demonstrate how the
system ensures safety, we examine two potential scenarios:

– Case 1: The bridge operator is the honest node. This operator adheres to
the correct protocol by advancing the specified BTC amount to the user
on the Bitcoin network and subsequently reclaiming the same amount from
the BitVM Federation’s multi-sign address. The system functions correctly,
thereby ensuring safety.

– Case 2: The bridge operator is malicious. In this scenario, a dispute arises
when the operator attempts to reclaim more than the advanced BTC amount.
An honest node identifies the discrepancy and initiates a BitVM challenge
game to take the locked BTC of the malicious node and impose a penalty.
Through this incentive-driven mechanism, the system achieves safety.

4.4.2 Liveness Analysis
For the Peg-In bridge, both OP-DLC and BitVM bridge channels maintain live-
ness, provided at least one relay operates effectively, as mentioned in the previous
section. According to the threat model, there’s at least one honest node within
the BitVM Federation. Given that the relayer is open-source and permissionless,
the honest node can perform relayer services to ensure the system’s liveness.

For the Peg-Out bridge, the system attains two levels of liveness: strong
liveness and weak liveness, applicable to the two distinct channels. The Peg-
Out process of the BitVM bridge achieves strong liveness, requiring only one
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honest node to be operational within the BitVM Federation. Similar to the
Peg-In process, this honest node can function as both the relayer and the bridge
operator, ensuring that bridge transactions are finalized and liveness is achieved.

On the other hand, the Peg-Out process of the OP-DLC bridge attains weak
liveness, which necessitates at least t(t ≤ n) honest nodes to be active within
the BitVM Federation. Since the oracle network requires t nodes to sign a valid
signature, the system only achieves liveness when there are enough t nodes op-
erational.

5 Conclusion

Via the technological design described above, Bitlayer’s comprehensive approach
not only addresses scalability challenges but also prioritizes security and flexi-
bility, positioning itself as a leading solution in the evolving Bitcoin Layer 2
landscape. Its innovations hold promise for unlocking new possibilities in de-
centralized finance and blockchain applications, driving continued growth and
adoption in the crypto industry.

In the future, Bitlayer will continue to optimize and enhance the transaction
verification mechanism on Bitcoin, such as introducing zero-knowledge proofs to
improve the efficiency of the Challenge-Response process. Additionally, continu-
ous research and development will be conducted on the Layered Virtual Machine
(LVM) to support more smart contract development languages. Moreover, Bit-
layer will also explore new cross-chain solutions to enhance the security of user
assets on the Bitlayer platform.
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