Bitlayer Network: The Computational Layer for

Bitcoin
2.0 Preview

Bitlayer Research Team

June 24, 2025

Abstract

Bitcoin’s limited transaction throughput and programmability hinder its potential in De-
centralized Finance (DeFi). Existing Layer 2 solutions often introduce new trust assumptions,
failing to anchor their security directly to Bitcoin’s consensus. This paper introduces Bitlayer,
a Layer 2 network that solves this challenge using the BitVM paradigm. Our core contribution
is a novel, recursive verification protocol that, for the first time, enables a continuous chain of
Layer 2 state transitions to be verifiably settled on Bitcoin. This moves beyond mere data in-
scription to achieve security rooted in Bitcoin’s proof-of-work. Furthermore, we deeply integrate
BitVM bridge with our rollup protocol to enable secure transfers of Bitcoin assets. Finally, we
designed a high-performance execution engine and a fast consensus mechanism to provide users
with ”sub-second soft finality. Bitlayer unlocks Bitcoin’s vast, untapped capital for a new gen-
eration of decentralized applications, laying a foundational infrastructure for the Bitcoin DeFi
ecosystem.

1 Introduction

Bitcoin holds immense potential for Decentralized Finance (DeFi), but its core design limits trans-
action throughput and programmability. Activating Bitcoin’s vast, untapped capital thus depends
on secure and scalable Layer 2 solutions [1].

However, existing approaches to scaling Bitcoin fall short. Sidechains that rely on federated
multisignatures introduce centralized trust, fundamentally undermining Bitcoin’s security model.
Meanwhile, early rollup designs for Bitcoin can post transaction data to the L1 but lack a mechanism
to enforce the validity of state transitions on-chain. This leaves them vulnerable, as their security
is not fully guaranteed by Bitcoin’s consensus [7].

This raises a critical question: is it possible to build a Bitcoin L2 that achieves scalable com-
putation while ensuring state validity is enforced by the Bitcoin mainnet itself, without new trust
assumptions?

This paper introduces Bitlayer, a Layer 2 network that provides an affirmative answer through
rollup architecture and the BitVM paradigm [2]. overcome the limitations of both the Bitcoin
and existing Layer 2 solutions by enabling scalable computation while anchoring its security to the
underlying Bitcoin blockchain. Our primary contributions are as follows:

e A Recursive Bitcoin Settlement Protocol for Rollups: We design and formalize the
first rollup protocol that uses a recursive BitVM-based framework to settle a continuous claim
chain of Layer 2 state transitions on Bitcoin. This provides security by anchoring the L2’s
validity directly to the L1.



e A Synergistic Integration of Bridge and Rollup: We design and implement a secure
asset bridge inspired by the BitVM bridge architecture. The core innovation is its deep
integration with our rollup protocol, which ensures that asset security and rollup validity are
governed by a unified trust model, enabling seamless and secure asset transfers.

e A High-Performance Execution Layer: We design and implement a high-performance
execution layer, powered by a fast consensus mechanism, to achieve Sub-Second Soft Finality.
This provides a highly responsive experience ideal for DeFi, gaming, and other demanding
applications.

2 Network Architecture

Bitlayer operates on a dual-level architecture that combines a Proof-of-Stake (PoS) consensus for
fast block production with a rollup framework that anchors its security to the Bitcoin network.
The PoS layer allows validators to sequence transactions and produce blocks rapidly, providing a
high-throughput, EVM-compatible environment. The rollup layer then periodically commits and
settles the state of this L2 chain onto the Bitcoin blockchain. This design leverages Bitcoin as the
ultimate layer for security and data availability, while Bitlayer network serves as a scalable and
efficient computational layer.

2.1 Network Participants and Roles
The network is maintained by two key participants: Validators, and Full Nodes.

Validator

Full Node
/ State Sync
S Client
S

9
4
P s
. - . g
; et \\ é” ;
/I ,*'/ \\ 00 «'l
consensus
Validator ~ |---------mmeee oo Validator
%

(¢] N .
S
.@Q' Full Node
) S s

Validator
Candidate Validator

B ESERREEREEEEER ' (Rollup Operator) \ m

Figure 1: Network Architecture

e Validators: Validators form the backbone of the PoS consensus. They are responsible for
producing and validating L2 blocks, ensuring the network’s safety and liveness. To join the



validator set, a candidate must stake BTR tokens, and their influence in the consensus is
proportional to their total stake, which can include tokens delegated by other BTR holders.

— Rollup Operator: The Rollup Operator is a specialized, rotating role assigned to a sin-
gle validator from the set. This operator is responsible for bundling L2 state transitions
into batches, generating cryptographic proofs, and submitting them for settlement on
the Bitcoin L1. To ensure accountability and disincentivize fraud, the operator must lock
a significant amount of BTC as collateral on L1. The operator role rotates periodically
to prevent censorship and centralization.

e Full Nodes: Full nodes maintain a complete copy of the Bitlayer network blockchain, inde-
pendently verifying all transactions and state transitions without trusting validators. They
play a crucial role in enforcing the protocol rules and ensuring network transparency.

2.2 Dual-Level Transaction Finality

Bitlayer offers a dual-level finality model, giving users and applications a choice between speed and
Bitcoin-level security.

e Soft Finality: A transaction achieves soft finality in seconds once its containing block is
confirmed by Bitlayer’s PoS consensus. This provides a fast and responsive user experience,
with security backed by the economic stake of the validator set.

e Hard Finality: Hard finality is the highest security guarantee, achieved when the L2 state
containing the transaction is settled and finalized on the Bitcoin blockchain. Due to the
optimistic rollup’s challenge period, this takes approximately seven days. The security for
hard finality relies on only a single honest party to challenge fraud, making it nearly equivalent
to Bitcoin’s own security.

In the rare event of a successful L1 challenge that creates a discrepancy between the L2 state and
the settled L1 state, the protocol is designed to halt. The network’s recovery would then be guided
by social consensus among stakeholders to ensure the integrity of user assets.

3 Settling L2 State on Bitcoin

As a Layer 2 rollup, Bitlayer derives its security from Bitcoin. This chapter details the core
mechanism that underpins this relationship: settlement. Settlement is the process by which L2 state
transitions, executed in Bitlayer’s high-throughput environment, are committed to and finalized
on the Bitcoin L1. This allows Bitlayer to inherit Bitcoin’s security guarantees. The challenge,
however, is achieving this on Bitcoin’s constrained, non-Turing-complete script environment.

Our solution is a novel settlement protocol inspired by the BitVM paradigm. This chapter
systematically deconstructs this protocol. We first define the concepts of a state claim and explain
our hybrid verification approach. After introducing the necessary cryptographic primitives, we
detail the protocol for settling a single state claim. Finally, we show how this is extended into a
recursive protocol that settles a continuous chain of L2 claims, forming the backbone of the entire
rollup.



3.1 Defining the L2 State Claim

At its core, a blockchain is defined by a State Transition Function (STF), denoted as Y. This
deterministic function dictates how the network’s State (s) evolves. A state, which includes all
account balances and contract data, is represented by a 32-byte Merkle root. The STF takes the
current state s; and a batch of L2 Transaction Batch (7") to produce the next state s;yi:

St4+1 = T(St, T)

where t is the index of transaction batch. The entire history of the blockchain unfolds from an
initial genesis state (so).

A State Claim (®) is a formal assertion submitted by a Rollup Operator to a smart contract
on the Bitcoin L1. Its purpose is to commit to a new L2 state that has resulted from processing a
specific transaction batch. This claim acts as the anchor, linking L2 activity to the L1 and enabling
Bitlayer network to inherit Bitcoin’s security.

d = {St—ly St, T}

3.2 Cryptographic Primitives

The settlement protocol relies heavily on two advanced cryptographic primitives: Succinct Non-
interactive Arguments (SNARGs) and Hash-based One-Time Signature scheme.

3.2.1 Grothl6 SNARG

Following the Groth16 paper [1], a SNARG for a relation R consists of three probabilistic polynomial-
time algorithms (Setup, Prove, Vfy):

e § < SNARG.Setup(R): A setup algorithm that produces a common reference string ¢ for a
given relation.

e 7 < SNARG.Prove(R,d, ®,w): A prover algorithm that, given the common reference string o,
a claim ®, and a witness w, generates a proof argument 7.

e 0/1 < SNARG.Vfy(R,d,®,m): A verification algorithm that accepts or rejects the proof.

The SNARG satisfies perfect completeness, computational soundness, and what we define as full
succinctness.

Definition 1 (Full Succinctness). A protocol (Setup, Prove, Vfy) is fully succinct if the verifier Vfy
runs in time polynomial in the security parameter X\, and the size of the proof w is also polynomial
m A.

3.2.2 Hash-based One-Time Signature (HOTS)

The Bitcoin script language, with its OP_CHECKSIG opcode [0], is designed to verify signatures for

transactions, not for arbitrary off-chain messages. While proposals like BIP348 exist to extend this

functionality, they require a network consensus change. To overcome this limitation, We utilize a

Hash-based One-Time Signature scheme (HOTS) [5, 8]. This approach is particularly advantageous

as hash functions are native and computationally inexpensive operations within Bitcoin script.
Our variant of HOTS consists of four algorithms:



(sk,pk) < HOTS.setup(\): Generates a secret key and public key pair from a security pa-
rameter.

s < HOTS.publish(pk,b): Publishes a commitment to the Bitcoin script, preparing it to
verify a signature for a message of length b.

w <— HOTS.sign(sk,m): Signs a message m with the secret key to produce a witness w.

(0/1,m) < HOTS.verify(pk,w): Verifies the witness w. If valid, it returns ‘1‘ and reveals the
original message m on the stack for further on-chain processing.

This final property—the on-chain revelation of the signed message—is a critical component for
linking consecutive state claims, as will be detailed in Section 3.5.

3.3 Protocol Overview

The entire settlement protocol is embodied in a BitVM-style smart contract, which is not a single,
monolithic contract but rather a complex graph of pre-signed Bitcoin transactions. Participants
must jointly pre-sign this transaction graph and are bound to interact strictly according to its
predefined pathways. Whereas the original BitVM protocol focused on settling claims about events
on both external chain and the Bitcoin for bridging purposes [3], Bitlayer’s protocol is more intricate.
It must settle a continuous sequence of claims, each representing a discrete change in the L2 state,
and guarantee that this sequence is consecutive and unbroken.

The protocol can be conceptualized as a recursive structure. In Section 3.4, we will first elaborate
on the sub-protocol for settling a single state claim. Then, in Section 3.5, we will detail how this
single-claim verification mechanism is recursively embedded within a broader protocol that settles a
continuous chain of claims. By combining these two components, we construct the complete rollup
protocol for settling the Bitlayer network state on Bitcoin.

3.4 Settling a Single Claim
3.4.1 The BitVM2 Paradigm

The on-chain verification of a claim is conducted optimistically. The verifier program in our case is
expressed in Bitcoin script. However, as demonstrated by the groundbreaking work of the BitVM
Alliance on a Grothl6 verifier, a monolithic implementation of such a verifier is far too large to
execute directly within a single Bitcoin transaction. Therefore, the BitVM2 paradigm [2] splits the
large verifier program into a chain of smaller sub-programs, or ”chunks.” The protocol then proceeds
as a fraud-proof game, where it is assumed the operator’s claim is correct unless a challenger can
pinpoint an incorrect computation step between two specific chunks.

3.4.2 Protocol Roles

The BitVM smart contract for claim settlement involves a well-defined set of participants:

1. Attesting Committee: Rather than forming a new entity, the existing validator set of the
Bitlayer network serves as the attesting committee. This committee is collectively responsible
for pre-signing the transaction graph that defines the protocol.

2. Protocol Participants: The active participants in the settlement game include a single, des-
ignated Operator responsible for submitting claims and any number of Watchers. Watch-
ers can be anyone, including other validators, and their role is to monitor the operator and
challenge fraudulent claims.



3.4.3 Single Claim Verification Protocol

The protocol for verifying a single claim unfolds as a timed challenge-response game governed by
Bitcoin time locks. It ensures that both the Operator and any Watcher must act within specified
time bounds or face penalties. The protocol can be broken down into three primary stages, which
correspond to a series of interconnected Bitcoin transactions pre-signed by the Attesting Committee.

Selup Stage Claim Stage Challenge and Resolution Stage

Claim - hallenge

B ~Operator

e
il
|

e H
K [ | : :
o ‘ I : Challenge Assert Disp :
. [ N S :
o : H . N
o : : L Operator N ( I | & | ——>Operator
o : : ) :
o : : Watcher <8 | :
9 - N :
. [ M :
| M : :
! H
! H
!

DN P . L Disprove

> (d—a)B| & Burn

aB_| + Watcher

E3

Figure 2: Single Claim Verification Protocol

1. Setup Stage Before the game begins, a trusted public setup generates the necessary scripts.
The STF () is used to create a common reference string § via SNARG.Setup. The verifier program
f(m) = SNARG.Vfy(R,d, P, 7) is split into a set of smaller sub-programs {f;(1;)}. Three types of
locking scripts are created: a Claim Script to initiate the process, an Assert Script for the
Operator to post results of all f;, and a set of Disprove Scripts, one for each sub-program, which
Watchers can use to prove fraud. The Claim Script and Assert Script are composed of multiple
HOTS, which force operator to post signed claim and results of all sub-programs. The Disprove
Scripts include all sub-programs and are organized within a Taproot address. These scripts are
then embedded into the outputs of the pre-signed transaction graph.

2. Claim Stage The Operator initiates the process by publishing a Claim transaction, which
spends from a previous UTXO and locks their collateral (e.g., d BTC). To unlock this input, the
Operator must use their HOTS key to sign and reveal the state claim ®;. This action starts a
timer, Achallenge- Watchers observe this claim and can run the STF locally. If they find the claim
to be invalid, they can issue a Challenge transaction before the timeout. If no challenge occurs,
the Operator reclaims their collateral via an Optimistic Acceptance transaction, and the claim is
considered settled.

3. Challenge and Resolution Stage If a Watcher issues a Challenge transaction (which may
require them to post a smaller collateral, ¢ BTC, to deter frivolous challenges), the pessimistic path
is taken. The Operator is now compelled to execute an Assert transaction. In doing so, they must
run the chunked verifier program locally and use their HOTS key to sign and publish the results
of all sub-programs {f;}. This action starts another timer, Agisprove-

The Watcher now examines the sequence of results published by the Operator. If the Watcher
can find a single sub-program f; where the Operator’s published output is inconsistent with the



execution of f; on the Operator’s published inputs, they have found fraud. The Watcher can
then construct a Disprove transaction. This transaction spends the output corresponding to the
fraudulent sub-program, executing that small chunk of logic on-chain to prove the inconsistency. A
successful Disprove transaction forfeits the Operator’s collateral, a portion of which (a BTC, where
a > c) is awarded to the Watcher. If the Operator correctly publishes results of all f;, and the
Watcher fails to submit a valid Disprove transaction in time, the Operator can finalize the claim
via an Acceptance transaction and recover their collateral.

3.4.4 Security Properties

This protocol is designed to be secure under the assumption of at least one honest Watcher. Its
security rests on three key properties, which are analyzed in detail in Chapter 6.2.

e Completeness: An honest Operator who correctly follows the protocol and submits valid
state claims will never be unjustly penalized.

e Soundness: A dishonest Operator who submits a fraudulent claim cannot avoid being pe-
nalized, as an honest Watcher will always be able to construct a valid Disprove transaction.

e Efficiency: The entire claim verification process, whether it results in acceptance or rejection,
is guaranteed to terminate within a bounded timeframe defined by the protocol’s time locks.

3.5 Settling a Chain of Claims

The protocol described above is sufficient for settling a single, isolated claim. However, a rollup
requires the continuous settlement of a sequence of claims that represents the ongoing evolution of
the L2 state. This is achieved by extending the protocol to recursively chain claims together.

3.5.1 Linking Claims with HOTS

The key to chaining claims lies in the transaction graph’s structure. Each Claim transaction, in
addition to its other outputs, creates a special UTXO called a claim connector. To submit the
next claim (Claim N + 1), the Operator must spend the claim connector UTXO created by the
transaction for Claim N. The locking script for this connector requires the Operator to use their
HOTS key to sign and reveal the data package for Claim N +1. This design naturally links adjacent
claims into a chronological and unforgeable chain, as each claim transaction can only be created by
consuming an output from its direct predecessor. Bitcoin time locks are used to enforce a regular
cadence, preventing the Operator from submitting claims either too quickly or too slowly.

3.5.2 The Trunk Transaction Graph and Parallel Verification

This recursive structure results in a transaction graph with a primary trunk that links the sequence
of claims. At each claim on the trunk, a complete sub-graph for single-claim verification (as
described in Section 3.4) branches off.

A critical feature of this design is that the submission of the next claim does not need to wait for
the final resolution of the previous claim’s verification sub-protocol. The Operator can submit Claim
N +1 while the challenge window for Claim N is still open. This parallelism is efficient but requires
a mechanism to handle cascading failures. If Claim N is successfully challenged, the protocol
ensures that its state is invalid, which automatically invalidates the premise of all subsequent
claims (N + 1, N + 2,...). A rational Operator, upon having a claim successfully challenged,



is economically incentivized to cease submitting further claims, as each would require posting
collateral that is doomed to be forfeited. The trunk would then terminate via a ClaimTimeout
transaction.

<Watcher>ClaimTimeout

—— ] w— d—u)b | Operator
| a8 | +——»  Waicher
Claim <N> Claim <N+1>
Operator  --------cereemmna- > B | 1 [ H [ [| [ o= 2B Fpeemememeeeeeeees >
[ J
| a8 } 48

—» Single Claim Verification Sub-Protocol

Figure 3: The Trunk Transaction Graph

3.5.3 Transaction Graph Reconfiguration and Epochs

Constructing, pre-signing, and storing a transaction graph intended to last for the entire lifecycle of
the rollup (e.g., 100 years) is computationally and logistically infeasible for validators. It would also
require an impossibly large amount of BTC to be locked as collateral upfront and would preclude
any future protocol upgrades.

To solve these problems, we introduce Reconfiguration. The protocol’s timeline is divided
into discrete epochs, with each epoch consisting of a fixed number of claims (e.g., lasting for
two weeks). At the transition between epochs, a reconfiguration event occurs. For each attesting
ceremony, the validator set only needs to pre-sign the trunk transaction graph for the upcoming
epoch. This makes the burden on validators manageable.

The Exit Window Reconfiguration is also the point at which protocol upgrades or changes to
the validator set can occur. These changes may alter the security assumptions or trust parameters
of the system. To protect user sovereignty, Bitlayer provides a mandatory Exit Window. The
configuration for Epoch N + 2 is proposed and finalized during Epoch N. This gives users the
entirety of Epoch N + 1 to review the new validator set and transaction graph for Epoch N + 2.
If a user does not approve of the upcoming changes, they have a full epoch to exit the system by
withdrawing their assets (e.g., pegging-out BT'C via the BitVM Bridge) before the new configuration
takes effect.

Validator Incentives All validators are required to stake BTR tokens to participate. The pre-
signing ceremony for each epoch’s transaction graph is coordinated through a system contract
on the L2. Failure to participate in the ceremony in a timely manner results in the forfeiture



of a portion of the validator’s staked BTR, strongly disincentivizing attacks designed to stall the
protocol.

3.5.4 The Reconfiguration Process

The reconfiguration process is orchestrated by the L2 system contract. The designated opera-
tor prepares all necessary information for the next epoch’s transaction graph, and each validator
independently generates it, signs it, and submits their signature to the L2 contract. Once a su-
permajority (N — f) of valid signatures are collected, they are aggregated, and the attestation is
complete.

This process culminates in a Reconfiguration transaction on Bitcoin. This transaction
locks the aggregate collateral required for all claims in the new epoch and records the updated
configuration parameters, such as the verifier program commitment ¢, the operator’s identity, and
time lock values. Reconfiguration transactions must be issued immediately after pre-signing
is completed to promptly announce configurations. The very first such transaction, the Epoch 0
Reconfiguration transaction, bootstraps the entire rollup protocol and records the genesis state
so of the Bitlayer network.

<Watcher>ClaimTimeout

(v — a)B | Operator

| aB |———>=  Walcher
Epoch 0 Reconfiguration Epoch N-1 Claim <i> Epoch N Claim <0>
Operator > ol L b > b emmmmmm e >
OP_RETURN | [ i

Epoch N Reconfiguration

Operator > ol

OP_RETURN |

Figure 4: Transaction Graph Reconfiguration

3.6 Summary

In summary, the Bitlayer settlement protocol materializes as a perpetual, yet manageable, BitVM-
style transaction graph on Bitcoin. This graph is cyclic, composed of per-epoch sub-graphs that
are linked together through reconfiguration transactions. Each epoch’s sub-graph contains a trunk
of chronologically linked state claims, and each claim is accompanied by its own verification sub-
graph—a sophisticated challenge-response game that allows any single honest participant to enforce
the correctness of the L2 state. This architecture enables Bitlayer to achieve a high degree of
scalability and programmability while being securely anchored to Bitcoin’s unparalleled proof-of-
work consensus.



4 State Transition Function and Batch Proof

Chapter 3 established how a state claim is settled on Bitcoin. This chapter details what is being
settled: the execution of the Bitlayer Network STF over a batch of L2 blocks. We first define the
components of our STF, including its unique system contracts. We then present the core technical
contribution of this section: a multi-stage, recursive proving pipeline that uses a zero-knowledge
virtual machine (zkVM) to generate a single, succinct proof for an entire batch of L2 activity,
making verification on Bitcoin feasible.

4.1 The Bitlayer Network STF

Bitlayer Network’s STF aligns with the fundamental principles of Ethereum [9]. At the same time,
as a Bitcoin rollup, it extends EVM with additional features and processes to address its unique
requirements.

4.1.1 Gas and Fee

Transaction fees on Bitlayer Network are paid in BTC. Unlike native tokens that can be minted
arbitrarily, BTC is safely injected into the Bitlayer network via the BitVM bridge. Bitlayer Network
introduces a distinct gas model where transaction costs are separated into execution, storage, and
Data Availability (DA) components. This allows for a dynamic fee mechanism that reflects both
the transaction’s resource usage on L2 and the current data posting costs on the Bitcoin network.

4.1.2 System Smart Contracts

System Contracts in Bitlayer Network are a set of special-purpose contracts, deployed at genesis,
that contain core protocol logic enforced during state transition verification. Changes to these
contracts are managed by a governance mechanism, which oversees protocol evolution through a
transparent voting process conducted by elected representatives.

System Config The System Config contract defines core operational parameters for the STF,
such as block gas limits and dynamic gas pricing. Its primary purpose is to allow for risk-managed
adjustments, such as congestion control, in response to network conditions. Unlike the more rigid
Reconfiguration process on L1, changes to the System Config are flexible, requiring agreement from
the validators to take effect in the subsequent block.

Validator Management The Validator Management contract is crucial for the network’s de-
centralized operation, overseeing the entire validator set on an epoch-by-epoch basis.

e Participation and Selection: Participation is permissionless; anyone who meets a mini-
mum staking threshold can stake BTR tokens to join the validator set. New stakers enter a
pending queue, from which the protocol promotes new validators to the active set each epoch,
up to a configured limit. Similarly, exiting validators enter an inactive queue for a defined
period before their stake is released. The active validator set for each epoch is responsible for
two primary functions: L2 block production and serving as the Attesting Committee for the
Bitcoin Settlement Protocol and the BitVM Bridge.

e Incentives and Penalties: The contract enforces a clear economic model. Validators are
rewarded in BTR for their work in securing the network, with rewards proportional to their

10



stake and performance. This model includes role-specific incentives: the Rollup Operator
receives additional BTR rewards to offset the costs and collateral risks of L1 settlement,
while Attesters are rewarded for their participation in the pre-signing process. Conversely,
any validator failing to adhere to the protocol faces penalties, including the slashing of their
staked BTR.

Bitcoin Light Client Contract The Bitcoin Light Client ensures that significant Bitcoin L1
events are accurately reflected within the Bitlayer ecosystem.

e Permissionless Monitoring: The off-chain ” Listeners” monitors Bitcoin for relevant activi-
ties (e.g., pegin requests) and submits corresponding block data to the L2 light client contract.
The listener is intentionally designed to be permissionless, Anyone can act as a Listener by
submitting Bitcoin block headers to the contract. To process these potentially conflicting
submissions, the contract enforces Bitcoin’s heaviest-chain fork choice rule to maintain the
canonical chain. A submitted block is then considered finalized after accruing six or more
subsequent confirmations.

e Liveness Guarantee: To ensure the L2 state remains synchronized with L1, the Rollup
Operator is obligated to submit Bitcoin block updates if no one else does. This is enforced
within the rollup’s proof system, which verifies that each new state claim corresponds to a
minimum number of new Bitcoin blocks having been processed.

e Censorship Resistance: To guarantee a level of censorship resistance equivalent to Bitcoin,
this contract enables a Force-Inclusion Transaction mechanism. A user can broadcast a
transaction directly to Bitcoin using a specific format. The Bitlayer protocol obligates the
Rollup Operator to process all such transactions ”seen” by the light client on L1 within a
defined time limit. This is enforced by the proving system: if a proposed batch fails to include
a pending forced transaction, the proof generation will fail, leading to the Operator’s bond
being slashed.

Bridge This contract manages the bidirectional flow of assets between Bitcoin and Bitlayer Net-
work. When the Bitcoin Listener reports a pegin transaction, the Bridge contract is invoked to mint
an equivalent amount of the asset on L2. It also handles the initiation of withdrawals (peg-out)
from Bitlayer Network back to Bitcoin. The detailed logic of the bridge mechanism is discussed
further in Chapter 5.

4.2 Transaction lifecycle

1. Sequencing: Users initiate transactions on the L2 network (Step 1a). These transactions are
collected by the Sequencer component within the validator, while on-chain interactions (Step
1b), such as deposits and force inclusion transactions, are submitted to Bitcoin. The Bitcoin
Listener component continuously monitors the Bitcoin and synchronizes L1 transactions to
the Sequencer (Steps 2-3).

2. Block Consensus: After collecting the transactions, one of the Sequencers is selected to
propose a set of transactions. All the validators could reach an agreement on the ordering
and content of the proposal through the consensus (Step 4). Once consensus is achieved, a
sequenced L2 block is produced (Step 5).

11



3. Execution: Once a block is produced, it is immediately executed by the validator (Step 6).
This includes applying all transactions in the block to update the L2 state and storing the
resulting state in the database. This ensures that every validator maintains a consistent and
up-to-date view of the state.

4. State Claim: After executing blocks, the Operator component fetches block data from the
database (Step 7), assembles rollup batch information, and starts the Bitcoin settlement
process as described in Chapter 3.

5. Proof Generation: When a Watcher challenges the state claim posted by the Operator
on Bitcoin, the Operator responds by generating a zero-knowledge proof (ZKP) to defend
the correctness of the claimed state. To this end, the Operator submits proving tasks to
the ZK Prover (Step 9). The Prover generates ZKPs based on the execution trace and state
transition. These proofs are then returned to the Operator (Step 10) and submitted to Bitcoin
(Step 11) as evidence supporting the validity of the rollup state.

11. Submit ZK Proofs
8. Rollup Batch Info,

& Start Game Play
2.Sync L1 T Validat
E ‘ ———7.Pull Blocks:
1b. L1 Tx
L2pB
‘ 10. Send Proofs
6. Store Block & BT AU
Update State
2K
p\l 5. Produce Elockﬁ Prover
User
L2 Block
4. Consensus
/ T SN—
Validator
& Network 5

Figure 5: Transaction Lifecycle

In the following section, we provide a detailed explanation of the Prover’s architecture and the
internal structure of the generated proof.

4.3 Verifying Batch Proof

To verify the state transition function of our rollup protocol, we use a zkVM as the foundation
of our constraint system and proof generation protocol. This section describes the architecture
and operational flow of the zkVM-based proving system. The design leverages the flexibility of
zkVMs to generate proofs directly from the existing execution codebase, utilizing a multi-stage,
recursive workflow to ensure both the integrity and validity of computations. Ultimately, this
process produces a final proof that can be efficiently verified on-chain.

12



4.3.1 Recursive Proving Pipeline

The core of the zkVM proving workflow is a sequential pipeline consisting of four distinct stages:
STF Execution, Batch Aggregation, Batch Recursion, and Finalization. Each stage receives specific
inputs, performs computations within the zkVM, and generates outputs that either feed into the
next stage or contribute to the final verifiable proof. This recursive architecture enables efficient
aggregation and compression of proofs, enhancing the scalability and efficiency of the system. The
proving pipeline is illustrated in the following figure, and each stage will be described in detail.

The integrity of the STF is fundamentally secured by the CodeCommitment, the hash of the
STF program binary. To ensure the integrity of the entire process, the CodeControlGroup is em-
ployed. This structure is an append-only Merkle Patricia Trie (MPT) that represents the outcome
of social consensus: each leaf node of the MPT corresponds to a valid CodeCommitment. Opera-
tors usually publish the CodeControlGroup prior to a system upgrade, and it is accepted by all
participants. This approach enables index-based lookup of valid code commitments, ensuring that
all proofs are generated only from authorized and correctly specified program versions relevant to
their operational context.

STF Proof

Executing Index

Block

E
ToState
Data

Proof
CodeCommitment
ChainedSTFs

D

STF Proof
Index

Executing
Block

ToState " Settlement Proof
Recursive Proof

Data Aggregate Proof CodeControlRoot

CodeC . t CodeCon_trolGroup :

ChainedSTFs Datalndexer FromState

Datalndexer 1 ToState
ChainedSTFs Datalndexer

STF Proof
Index

Executing
Block

ToState
Data

Figure 6: Recursive Proving Pipeline

Stage 1: State Transition Function Execution After the state transition of a single block
is completed, the proof of correct execution is initiated within the zkVM for that block. The
elements Index, FromState, ToState, and Data collectively serve as a claim of the correct outcome
for the block’s execution. Here, FromState and ToState are cryptographic commitments (e.g., state
roots) representing the state before and after the block’s execution, while Index provides a unique
identifier for the processed block—typically the block number. Data represents the commitment to
the operations processed within that block. In the current design, this is either the Merkle root of
the transactions within the block or another representation of the state changes applied.

Stage 2: Batch Aggregation Batch aggregation is used to combine multiple STF proofs from
consecutive blocks and to record their associated STF program commitments. This stage takes
several STF proofs as input and produces a batch proof as output. Batch aggregation not only
demonstrates the correctness of multiple STF proofs, but also verifies the consistency between

13



adjacent blocks. Specifically, it ensures that the ToState of the STF with Index is consistent with
the FromState of the STF with Index + 1. Additionally, the Data from all blocks in the batch
are combined into a single commitment, DataIndexer, indicating that the batch’s data has been
successfully validated against the data availability layer.

Furthermore, the code commitments of the STF programs used to generate each input STF
proof are extracted and recorded as CodeCommitment. This stage does not verify these STF code
commitments against the CodeControlGroup; that verification is deferred to the Batch Recursion
stage. The set of all valid STFs from previous stages is denoted as ChainedSTFs.

Stage 3: Batch Recursion The primary purpose of the batch recursion stage is to recursively
combine batch proofs, enabling the aggregation of proofs over progressively larger sequences of
blocks while maintaining a constant-size proof.

In this stage, two zkVM proofs, including the new batch proof and the ongoing recursive proof,
are combined into a new, single recursive proof. For the previous batch proof, each claimed STF pro-
gram commitment (CodeCommitment) is validated against the CodeControlGroup, and the Batch
Aggregation program is also validated against the CodeControlGroup based on the relevant execu-
tion index.

Likewise, both the previous recursive proof and the current Batch Recursion program must
comply with the CodeControlGroup constraints for their respective historical index values. This
comprehensive validation guarantees that the newly generated recursive proof correctly extends the
chain of trust from the genesis block.

Batch Recursive will incrementally scan all claim transactions from the blocks in Bitcoin longest
chain, making sure ChainedSTFs is consistent with the stated posted by claim transactions. At this
stage, CodeControlGroup, GenesisState, DataIndexer, and ChainedSTFs collectively serve as the
claims for the proof, with ChainedSTFs encapsulating the cumulative chained output, including the
latest state.

Stage 4: Settlement For settling the proof on the Bitcoin network, we utilize a final SNARG
proof, which features polynomial size and polynomial verification time relative to the security
parameter A. This compaction circuit significantly reduces the computational load required for
on-chain validation and remains fully compatible with the Bitcoin settlement protocol.

During this stage, a final check is performed to ensure that the recursive proving program version
used to generate the input Recursive Proof adheres to the constraints of the CodeControlGroup.
The CodeControlRoot, derived as the state root of the CodeControlGroup MPT, serves as a
commitment to the entire authorized code history and all current valid code versions.

The claim produced at this stage contains all information necessary for the on-chain verifier,
including CodeControlRoot, GenesisState, FromState, ToState, and DataIndexer. Watchers
first observe this claim and may decide to challenge it by submitting a Challenge transaction to
the Bitcoin network. If a watcher initiates a challenge, the proof is generated using the protocol
described in this section. Otherwise, the proof is produced in the background for use in future
claims.

4.3.2 On-Chain Verification via Bitcoin Script

The SNARG claim, generated by the zkVM proving pipeline, is specifically designed for efficient
and secure verification on the Bitcoin blockchain using its native scripting capabilities. This verifi-
cation process relies on a combination of static commitments embedded within the script template

14



(established during pre-signing transactions) and dynamic inputs provided at runtime with the
transaction containing the proof.

CodeControlRoot and GenesisState are hard-coded in the script template. These two values
are established prior to individual proof verification and serve as trust anchors for the system. The
settlement proof (i.e., the SNARG proof), along with FromState, ToState, and DataIndexer, are
specific to the particular state transition being verified.

The script combines the dynamic fields with the static GenesisState and CodeControlRoot
(which also serve as public inputs to the ZK proof itself). These elements are hashed together on-
chain to form a single, comprehensive ClaimHash. This ClaimHash represents the public statement
that the ZK proof attests to, with its integrity ensured by on-chain computation.

Following the BitVM2 approach (see Chapter 3), the ZK proof verification logic is invoked
optimistically. If the BitVM transaction graph accepts the proof, it confirms that:

1. The claimed state transition from FromState to ToState is computationally valid according
to the rules enforced by the zkVM programs;

2. The programs used were authorized as defined by the CodeControlRoot;
3. All relevant data was made available as defined by the DataIndexer;

4. The entire history traces back to the GenesisState.

5 Bridging Bitcoin and Bitlayer Network

A secure rollup requires a correspondingly secure mechanism for asset transfers between the L1 and
L2. This chapter details the Bitlayer Asset Bridge, the mechanism for transferring assets between
Bitcoin and the Bitlayer Network. The bridge is built upon the same BitVM paradigm as our
settlement protocol, ensuring a unified security model for both state validity and asset custody.

5.1 Roles

The bridge protocol involves several key roles:
1. Users: Asset holders who initiate transfers between Bitcoin and Bitlayer Network.

2. Broker: Assists users in preparing deposits and withdrawals, including constructing initial
transaction graphs and obtaining signatures from Attesters. Brokers directly interface with
users, abstracting the complexity of the BitVM protocol and enabling seamless interaction.

3. Attesting Committee: This is the same validator set from the rollup protocol. The com-
mittee elected for a specific Epoch N is responsible for pre-signing the transaction graphs for
all bridge requests initiated within that epoch.

4. Watcher: Permissionless observers who monitor the protocol and challenge malicious be-
havior.

5.2 Asset Cross-Chain Flow

Below we use BTC as an example to introduce the complete process of asset deposit and withdrawal.

15



Reclaim Verification Protocol { J [

Figure 7: Asset Cross-Chain Flow

5.2.1 Asset Deposit (Peg-in)

The peg-in process moves assets from Bitcoin to Bitlayer and is initiated by the user in several
steps:

1. Initiate Request: The user submits a PeginRequest to all brokers, specifying the UTXOs
for deposit, the target Bitlayer Network address, and a Bitcoin address for transaction change.

2. Preparation: A broker responds with a complete Pegin transaction and the associated
transaction graph. The user must carefully verify its correctness, ensuring all parameters
meet their expectations.

3. Broadcast & Mint: After verification, the user broadcasts the Pegin transaction on the
Bitcoin network. Once the Pegin transaction is confirmed on L1, the Bitcoin Light Client
on L2 (as described in Chapter 4) recognizes it. Anyone can then submit a proof of this
transaction to the Bridge contract on L2, which triggers the minting of an equivalent amount
of BTC to the user’s specified address.

5.2.2 Asset Withdrawal (Peg-out)

The standard peg-out process is designed for efficiency, relying on Brokers to provide upfront
liquidity for a fast user experience:

1. Initiate Burn: The user initiates a Burn transaction on the Bitlayer Network. This
transaction burns a specific amount of BTC on the L2 and specifies two key parameters:
the amount of BTC the user wishes to receive on the Bitcoin mainnet and the recipient’s
address. The difference between the amount burned on Bitlayer Network and the amount to
be received on Bitcoin constitutes the fee for the Broker.

2. Broker Fronts Funds: The Broker monitors for these Burn transaction. If a Broker finds
the fee acceptable, they will immediately front the requested funds to the user’s specified
address on the Bitcoin mainnet, efficiently completing the withdrawal.

After fronting the funds, the Broker needs to reclaim their capital from the protocol through the
security mechanism detailed below.

5.3 Broker Funds Reclamation

To recover their fronted funds, the Broker initiates a verification process by submitting a KickOff
transaction to the protocol. This submission serves as an assertion that the Broker has legitimately
fulfilled a valid Burn transaction. The verification follows the same optimistic, challenge-response
game used for state settlement in Chapter 3, where the Broker’s assertion is assumed correct unless
challenged.

16



e Challenge Process: Watchers verify the legitimacy of this Reclaim Claim. If any invalidity
is found (e.g., the corresponding Burn transaction does not exist or is invalid), a Watcher will
publish a Challenge transaction.

e Assertion and Penalty: Upon being challenged, the Broker must respond within a specified
time with an Assert transaction, which must contain a Groth16 ZKP. If a Watcher can
verify that this proof is invalid, they can publish a Disprove transaction to penalize the
Broker and receive a portion of their bonded collateral as a reward. This game-theoretic pro-
cess is mechanically identical to the Single Claim Verification Protocol described in Chapter
3.

This reclaim verification mechanism relies on the Bitlayer Light Client and depends on the
Bitcoin mainnet for the finality of Bitlayer Network transactions. Therefore, a Burn transaction
is considered valid only after it has been included in a Batch and achieved Hard Finality on Bitcoin.
If challenged, the Groth16 proof provided by the Broker must contain a complete verification chain
from the Bitlayer Network’s Genesis State to the current state to prove the validity and authenticity
of the Burn transaction.

5.4 Escape Hatch

The bridge includes an escape hatch to guarantee user sovereignty over their assets, even if the

L2 protocol halts. A halt can occur if the Operator repeatedly fails to submit new claims or if

a submitted claim is successfully challenged. In this scenario, while the Operator’s collateral is

slashed and the L2 state is protected from further invalid updates, user funds could become locked.

The escape hatch provides a new path for withdrawal, which also relies on Brokers for liquidity.
The process unfolds as follows:

1. User-Initiated Forced Withdrawal: A user initiates an emergency withdrawal by broad-
casting a force-inclusion withdrawal transaction directly to the Bitcoin L1. This transaction
contains a signature proving ownership of the L2 account and specifies the L1 address for
receiving the funds. While this L1 transaction cannot be fully processed by the stalled rollup,
it serves as an immutable, on-chain withdrawal request.

2. Broker Fronts Funds: Brokers monitor the Bitcoin L1 for these forced withdrawal requests.
After aggregating a sufficient number of requests to meet a predefined threshold, a Broker can
choose to front the liquidity, sending the funds directly to the users’ specified L1 addresses.

3. Broker Funds Reclamation: To reclaim their fronted capital, the Broker submits a reclaim
claim to the bridge protocol, accompanied by a single Groth16 proof. This proof must validate
three distinct conditions:

(a) Proof of L2 Halt: Evidence that the rollup protocol is stalled. This is confirmed
either by showing a CommitBatchTimeout transaction (indicating the Operator’s failure
to submit a new batch) or a successful slash transaction (indicating the last submitted
batch was fraudulent).

(b) Proof of Valid User Request: Evidence that the user’s withdrawal request is legiti-
mate. This requires proving the existence of the force-inclusion transaction on L1 (via
the Bitcoin Light Client) and confirming the user had a sufficient balance in the last
correctly finalized L2 state.

17



(c) Proof of Fulfillment: Evidence that the Broker has already sent the corresponding
funds to the user on L1, also confirmed via the Bitcoin Light Client.

This escape hatch mechanism ensures that users always retain control of their assets, relying only
on the security of the Bitcoin L1 and the economic incentives of the Broker network. We will
explore using account abstraction to define more intelligent withdrawal logic and extending this
mechanism to support the emergency withdrawal of assets held within smart contracts.

6 Security Analysis

This chapter presents a comprehensive analysis of the security that underpins the Bitlayer Rollup.
We begin by introducing a general security model for BitVM-style smart contracts, followed by
definitions and proofs of their safety and liveness properties. We then conduct a detailed analysis
of the Bitcoin settlement security properties discussed in Chapter 3. Finally, we briefly described
the inherent censorship resistance provided by decentralized networks.

6.1 BitVM-Style Smart Contract Security

BitVM-style smart contracts follow a universal transaction graph structure. In this section, we
provide a general security analysis applicable to all BitVM-style contracts, including the Bitlayer
Rollup contract.

6.1.1 System Model & Assumptions

In a BitVM-style smart contract, at least three roles are required to collaborate:

e Transaction Graph Proposer: The Proposer is responsible for initiating a contract in-
stance, the Proposer must stake a predefined amount of BTC, serving as both a commitment
and a deterrent against misbehavior.

o Attesters: We assume there are n Attesters, among whom m are honest. The remaining
n — m are semi-honest, meaning they follow the protocol and collaborate to construct the
presigned signature but may behave unpredictably off-protocol, such as retaining keys after
presigning. Each presigning requires the participation of at least n — m + 1 Attesters.

e Watchers: Watchers monitor the on-chain state submitted by the Proposer to ensure correct-
ness. If misbehavior is detected, they can hold the Proposer accountable by invoking penalties
on the staked BTC. The model assumes the existence of at least one rational, honest, and
active Watcher.

Additionally, we assume a synchronized network, where all communications between participants
and the Bitcoin network occur within a known bounded time A. All participants are assumed to
be rational and polynomial-time bounded, meaning all cryptographic tools used in the BitVM-style
smart contract are secure.

6.1.2 Transaction Graph Model

The Transaction Graph serves as the backbone of the BitVM-style smart contract, structured as
a directed acyclic graph (DAG). This model provides clarity and enforceability to the contract’s
execution.

18



e Preceding Txs: The transactions provide the initial outputs necessary for the contract’s
execution, which include the Proposer’s stake reserve and the Watcher’s reserve. The Attesters
must validate the existence and correctness of these transactions before presigning.

e Presigned Txs: The transactions that Attesters need to presign, which determines the logic
of the BitVM-style contract.

e Sink Txs: The transactions, lacking outgoing edges in the DAG, signify the release of funds.

Transa ction Graph

[ aec ) aBTC cBTC
Proposer Alice Watcher

\
i

Presigned Txs

tx5

x4 —
aBTC
p — <AggregatePubKey>
d BTC OP_CHECKSIG
<AggregatePubKey>
OP_CHECKSIG |

imelock”
=7
=0 P ~
> a+d BTC
<AggregatePubKey>
——
d BTC OP_CHECKSIG )

<AggregatePubKey>
OP_CHECKSIG |
L J

txk txk+1 tx k+2

x BTC

Bob ; <
R z BTC cBTC
“yec Someone Proposer
| boy .

Figure 8: Transaction Graph DAG Model

6.1.3 Design Principles

e Stake: The Proposer must stake a specified amount of BTC to initiate the contract. (d BTC
in the graph).

e Slashable: Incorrect STF submitted by the Proposer can result in the slashing of their staked
BTC.

e Termination: All outputs containing amounts in the presigned transactions must have a
timelock path (which may involve multiple transactions) leading to Sink Txs, ensuring the
contract eventually terminates.

19



6.1.4 Safety
Safety Goals

e Validity: Every transaction in the Transaction Graph must be valid post-presigning.
e Integrity: No new transactions can be added to the Transaction Graph after presigning.

e Flexibility: The BitVM-style smart contract can accommodate different security assump-
tions, depending on the application scenario.

Lemma 1. Let {tx1,...,tx,} be the presigned transactions spending utro,. No transaction tx' ¢
{tz1,....,txn} can spend utzo,.

Proof. We prove this important lemma by contradiction. Assume a presign committee {attestero, ...,
performed the setup presigning. If ¢z’ exists, it indicates that the Attesters have performed ad-
ditional signing outside of the setup phase, which implies that these n — m + 1 Attesters are
semi-honest. This contradicts the assumption. O

Lemma 2. Fach presign committee must include at least one honest Attester.

Theorem 1 (Validity). If a valid presigned signature 6 is produced for a transaction tx, then tx is
valid.

Proof. By Lemma 2, at least one honest Attester s; participated in the presigning and contributed
partial signature o; for tx. Hence, tx received by s; must be valid. Since the validity of § relies on
all Attesters contributing partial signatures to tx, it must be valid. O

Theorem 2 (Integrity).

Proof. Except for Sink Transactions, all outputs must require a multi-signature from the presign
committee. By Lemma 1, we can conclude that all participants can only spend the UTXOs in
the Transaction Graph along the predefined path, ensuring the integrity of the BitVM-style smart
contract. O

Theorem 3 (Flexibility).

Proof. We can dynamically adjust the security assumptions of the Attesters based on the require-
ments of the application scenario, as long as the presign committee ultimately includes at least one
honest node. Based on Lemma 1 and Lemma 2, validity and integrity can then be deduced. O

6.1.5 Liveness

Liveness at the Setup Phase The setup phase is inherently fragile in terms of liveness. If
even a single Attester refuses to cooperate, the entire contract setup will fail. This underscores the
importance of coordination and trust among participants during the initial setup phase.

Attester Rotation To address the liveness fragility problem without compromising security or
fungibility, we propose maintaining a pool of Attesters on the Bitlayer Rollup. Instead of requiring
all Attesters to be online, a fixed number of Attesters will be randomly selected from this pool
to form the presign committee for each instance. If the presign process fails to complete within a
specified time, a new committee will be selected. Additionally, Attesters who fail to respond will
be penalized and temporarily excluded from participating in subsequent committee selections.

20

attester,_m,}



Liveness at the Execution Phase

Liveness Goal

e Funds Liquidity: Funds involved in the contract’s Preceding Txs must not remain indefi-
nitely locked.

Theorem 4 (Funds Liquidity).

Proof. Since the timelock duration is known and finite, the Termination principle of the Transaction
Graph ensures that all funds will eventually be unlocked and flow to Sink Txs within a finite
time. 0

6.2 Bitcoin Settlement Security

This section focuses on proving the Bitcoin settlement security properties introduced in Chapter
3.4.4.

Lemma 3 (Completeness). An honest Operator who correctly follows the protocol and submits valid
state claims will never be unjustly penalized.

Proof. An honest operator publishes valid claims and sub-program results within the required time
windows, ensuring no inconsistencies arise. As a result, no watcher can unlock a Disprove Script,
and the operator is not penalized. To save space, the details are omitted here. ]

Lemma 4 (Soundness). A dishonest Operator who submits a fraudulent claim cannot avoid being
penalized, as an honest Watcher will always be able to construct a valid Disprove transaction.

Proof. If the dishonest operator does not publish ® within Agum, the operator will be penalized.
During the Claim Phase, the dishonest operator publishes ®. SNARG.Vrfy will fail locally for
watchers, they raise a challenge within Acpallenge, moving the protocol to the Challenge Phase. If
the operator does not publish the result of all sub-programs within time Aggsert, the operator will
be penalized.

If there is a disproved algorithm allowing watchers to unlock a Disprove Script with inputs and
outputs published by the operator that contradict the sub-program execution, then a dishonest
operator cannot escape penalties.

We prove the existence of the disprove algorithm as follows. First, since the inputs and outputs
published by the operator contradict the local sub-program execution, there must be at least one
inconsistent output produced by the sub-program, saying f’. Then, we check the consistency of
the inputs of f’. If all inputs are consistent, we select f’ as the challenged sub-program, otherwise
recursively run the first step for one of the inconsistent inputs. So, the disprove algorithm must
successfully select a sub-program to challenge. O

Lemma 5 (Efficiency). The entire claim verification process, whether it results in acceptance or
rejection, is guaranteed to terminate within a bounded timeframe defined by the protocol’s time
locks.

Proof. Each phase of the protocol has a bounded time. If both the Operator and Watcher are honest
in following the protocol, the optimistic time bound is A gim + Achatlenge- If either the Operator or
any Watcher tries to destroy the protocol, the time-bound will become A g + Aassert + Ddisprove-
Thus, the maximum time bound to confirm is Acqim + max{Ahalienge; Dassert + Ddisprove }, S0 that
the protocol terminates regardless of whether the claim is accepted or rejected. Thus, the protocol
guarantees efficiency by design. O

21



; e ( S
. ‘ {  Optimistic
. | N S

S > Assert ~ Agiprove > Disprove

:
:

' A claim ' max{A challenge Dassert + Adisprove} '

S > :(_____________________,,,........____________........................>I

Figure 9: Bitcoin Settlement Security

6.3 Censorship Resistance

Unlike traditional L2 architectures that rely on a single sequencer, our design employs a rotating
manner among validators to produce blocks. This decentralized sequencing mechanism ensures that
no single party can unilaterally censor transactions. As block production rotates among validators
in a permissionless and stake-weighted manner, any attempt to exclude valid transactions can be
bypassed in subsequent blocks, providing strong built-in censorship resistance and enhancing the
neutrality of the network.

7 Limitations and Future Directions

This chapter reflects on the current design of the Bitlayer Network, discussing its inherent trade-
offs and the promising research avenues they inspire. We first outline the primary limitations of
our current protocol and then detail future work aimed at addressing these challenges and further
advancing the capabilities of Bitcoin L2s.

7.1 Limitations

While the Bitlayer Network provides a robust framework for a Bitcoin computational layer, its
current design involves several trade-offs:

1. Trust Dependency on the Attester Committee: The security of the bridge and settle-
ment protocol relies on a 1-of-N honest-minority assumption within the Attester Committee.
While this provides strong security, eliminating this external committee through future Bit-
coin protocol upgrades remains a key goal for achieving a more fully trustless system.

2. Centralized Operator and Liveness: The current model uses a single, rotating Rollup
Operator for sequencing and settlement. While this is efficient, it presents a potential single
point of failure for liveness if the operator goes offline. This motivates the development of a
multi-operator mechanism.

3. Reliance on Broker Liquidity: The fast withdrawal and emergency escape hatch mecha-
nisms depend on an active network of third-party Brokers to provide upfront liquidity. The
system’s user experience and capital efficiency could be further improved by protocol-native
solutions that reduce this reliance.

22



7.2 Future Directions

We are actively researching several enhancements to address these limitations and expand the
network’s capabilities:

1. Leveraging Future Bitcoin Upgrades (Covenants): Upcoming potential Bitcoin pro-
tocol upgrades, such as those introducing new covenant opcodes (e.g., OP_CTV [1(], OP_CAT,
or similar proposals), could pave the way for more trustless smart contract functionalities
directly on Bitcoin. We are closely monitoring these developments and plan to integrate such
features, if and when they become available and stable. This could allow for:

e Elimination of Attester Committees: Potentially removing the need for an attester
committee for certain verification processes, moving towards a more fully trustless model.

e Enhanced Permissionlessness: Reducing reliance on pre-signed transactions or spe-
cific roles in the dispute resolution protocol, making the system even more open.

e On-Chain Operator Election: Managing Rollup Operator election and rotation more
directly on-chain, further enhancing liveness and decentralization.

e Optimized Collateral Management: Enabling more sophisticated collateral reuse
mechanisms within the same epoch without compromising security, thereby reducing
the capital costs for operators.

2. Advanced Proving Systems: Continuously evaluating and integrating advancements in
zero-knowledge proof systems and other cryptographic techniques to improve proof generation
efficiency, reduce on-chain verification costs, and enhance overall system performance.

8 Conclusions

In this paper, we have introduced Bitlayer, a scalable and EVM-compatible computational layer
for Bitcoin, whose security is based on an honest majority assumption. Bitlayer is built upon
the BitVM paradigm to enable complex, general-purpose computation while anchoring its security
directly to the Bitcoin network. Our core contribution is a novel recursive settlement protocol,
the first of its kind to allow for the continuous, verifiable settlement of Layer 2 state transitions
on Bitcoin. This protocol, combined with a synergistic asset bridge sharing the same security
model and a fully EVM-compatible execution layer, creates a complete and practical platform for
decentralized applications.

We view Bitlayer as a foundational step towards building the premier infrastructure for the
BTCFi ecosystem. By demonstrating a clear architecture where Bitcoin acts as the ultimate settle-
ment layer and Bitlayer as an efficient, verifiable computational layer, our work provides a practical
blueprint for unlocking Bitcoin’s vast potential. We hope that our design, which prioritizes low
transaction costs and strong censorship resistance, encourages further research into scalable and
secure applications built upon Bitcoin.

References

[1] S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2009. http://bitcoin.org/
bitcoin.pdf.

[2] Linus, Robin, Lukas Aumayr, Alexei Zamyatin, Andrea Pelosi, Zeta Avarikioti, and Matteo
Maffei. BitVM2: Bridging Bitcoin to Second Layers. https://bitvm.org/bitvm_bridge.pdf.

23


http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://bitvm.org/bitvm_bridge.pdf

[3]

Robin Linus. BitVM: Compute anything on bitcoin, December 2023. https://bitvm.org/
bitvm.pdf.

J. Groth. On the size of pairing-based non-interactive arguments, 2016. https://eprint.
iacr.org/2016/260.pdf.

Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography. https://toc.
cryptobook.us/book. pdf.

Bitcoin Wiki. Script, 2025. https://en.bitcoin.it/wiki/Script.

Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S. M., & Felten, E. W. (2018). Arbi-
trum: Scalable, private smart contracts. In 27th USENIX Security Symposium (USENIX
Security 18). https://www.usenix.org/system/files/conference/usenixsecurity18/
secl8-kalodner.pdf

J. Buchmann, E. Dahmen, S. Ereth, A. H"ulsing, and M. R uckert. On the security of the
winternitz one-time signature scheme, 2011. https://eprint.iacr.org/2011/191.pdf

Wood, G. (2014). "Ethereum: A Secure Decentralised Generalised Transaction Ledger.”
Ethereum Project Yellow Paper. https://ethereum.github.io/yellowpaper/paper.pdf.

Rubin, J. (2020). "BIP-0119: CHECKTEMPLATEVERIFY.” Bitcoin Improvement Propos-
als. https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki.

24


https://bitvm.org/bitvm.pdf
https://bitvm.org/bitvm.pdf
https://eprint.iacr.org/2016/260.pdf
https://eprint.iacr.org/2016/260.pdf
https://toc.cryptobook.us/book.pdf
https://toc.cryptobook.us/book.pdf
https://en.bitcoin.it/wiki/Script
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-kalodner.pdf
https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-kalodner.pdf
https://eprint.iacr.org/2011/191.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki

	Introduction
	Network Architecture
	Network Participants and Roles
	Dual-Level Transaction Finality

	Settling L2 State on Bitcoin
	Defining the L2 State Claim
	Cryptographic Primitives
	Groth16 SNARG
	Hash-based One-Time Signature (HOTS)

	Protocol Overview
	Settling a Single Claim
	The BitVM2 Paradigm
	Protocol Roles
	Single Claim Verification Protocol
	Security Properties

	Settling a Chain of Claims
	Linking Claims with HOTS
	The Trunk Transaction Graph and Parallel Verification
	Transaction Graph Reconfiguration and Epochs
	The Reconfiguration Process

	Summary

	State Transition Function and Batch Proof
	The Bitlayer Network STF
	Gas and Fee
	System Smart Contracts

	Transaction lifecycle
	Verifying Batch Proof
	Recursive Proving Pipeline
	On-Chain Verification via Bitcoin Script


	Bridging Bitcoin and Bitlayer Network
	Roles
	Asset Cross-Chain Flow
	Asset Deposit (Peg-in)
	Asset Withdrawal (Peg-out)

	Broker Funds Reclamation
	Escape Hatch

	Security Analysis
	BitVM-Style Smart Contract Security
	System Model & Assumptions
	Transaction Graph Model
	Design Principles
	Safety
	Liveness

	Bitcoin Settlement Security
	Censorship Resistance

	Limitations and Future Directions
	Limitations
	Future Directions

	Conclusions

